Author Affiliations
Abstract
1 State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
2 Huawei Technologies Co, Ltd., Bantian Longgang District, Shenzhen 518129, China
3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
This paper reports the fabrication of regular large-area laser-induced periodic surface structures (LIPSSs) in indium tin oxide (ITO) films via femtosecond laser direct writing focused by a cylindrical lens. The regular LIPSSs exhibited good properties as nanowires, with a resistivity almost equal to that of the initial ITO film. By changing the laser fluence, the nanowire resistances could be tuned from 15 to 73 kΩ/mm with a consistency of ±10%. Furthermore, the average transmittance of the ITO films with regular LIPSSs in the range of 1200–2000 nm was improved from 21% to 60%. The regular LIPSS is promising for transparent electrodes of nano-optoelectronic devices—particularly in the near-infrared band.
transparent nanowires periodic surface nanostructures femtosecond laser direct writing ITO film anisotropic electrical conductivity 
Opto-Electronic Science
2023, 2(1): 220002
作者单位
摘要
上海应用技术大学理学院,上海 201418
研究了基于多通道发光二极管(LED)的光谱优化模拟方法。根据光谱的线性叠加原理,将各色LED光谱导入程序,通过编程使模型在指定色温条件下输出显色指数、光效、色容差等最佳组合,以指导多通道LED照明产品调光调色应用。实验结果表明:暖白光LED与RGB(Red,Green,Blue)光混合后,在3000~5000 K色温范围内具有最佳的光度色度参数组合;在5000~8000 K范围内,冷白光LED与RGB光的混合效果最佳。探讨了各最优光谱组合解的视觉功效及非视觉功效,对光谱的最优解进行了实验验证。
视觉光学 色度学 光度学 发光二极管 光谱优化 
激光与光电子学进展
2023, 60(5): 0533001
作者单位
摘要
上海应用技术大学理学院,上海 201418
利用生理参数变化及情绪变化研究了声光融合效应问题,系统探讨了西方大调、小调音乐、3种单色光源(波长分别为623,537,445 nm)与2种不同色温(色温分别为3000,6000 K)白光对人体的影响。实验结果表明,人们对音乐的生理响应强于灯光的刺激作用,双因素刺激下的生理感知度比单因素更强烈,且音乐在声光融合环境中起主导作用。音乐和灯光双环境因素同时刺激情绪时,会产生交互作用,且两情绪正相关的环境刺激叠加可以增强情绪的感知,为音乐灯光表演秀或沉浸式互动照明的设计提供了理论支撑和意见。
视觉光学 声光融合 生理参数 情绪评价 照明应用 灯光 音乐 
激光与光电子学进展
2022, 59(7): 0733003
Author Affiliations
Abstract
Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures (LIPSSs), especially on glass surfaces. In this study, two-beam interference (TBI) of femtosecond lasers was used to produce large-area straight LIPSSs on fused silica using cylindrical lenses. Compared with those produced using a single circular or cylindrical lens, the LIPSSs produced by TBI are much straighter and more regular. Depending on the laser fluence and scanning velocity, LIPSSs with grating-like or spaced LIPSSs are produced on the fused silica surface. Their structural colors are blue, green, and red, and only green and red, respectively. Grating-like LIPSS patterns oriented in different directions are obtained and exhibit bright and vivid colors, indicating potential applications in surface coloring and anti-counterfeiting logos.
Opto-Electronic Advances
2021, 4(12): 200036-1
Author Affiliations
Abstract
1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
2 Department of Mathematics and Physics, Shanghai Dianji University, Shanghai 201306, China
This Letter reports the formation of periodic surface structures on Ni–Fe film irradiated by a single femtosecond laser pulse. A concave lens with a focus length of 150 mm is placed in front of an objective (100×, NA=0.9), which transforms the Gaussian laser field into a ring distribution by the Fresnel diffraction. Periodic ripples form on the ablation area after the irradiation of a single femtosecond laser pulse, which depends on the laser polarization and laser fluence. We propose that the ring structure of the laser field leads to a similar transient distribution of the permittivity on the sample surface, which further launches the surface plasmon polaritons. The interaction of the incident laser with surface plasmon polaritons dominates the formation of periodic surface structures.
220.4241 Nanostructure fabrication 160.3900 Metals 240.6700 Surfaces 320.7090 Ultrafast lasers 
Chinese Optics Letters
2017, 15(2): 022201

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!